Unit 2 - Electrons and Periodic Behavior

5.1 Models of the Atom

I.

- The Bohr Model of the Atom
 - A. Electron Orbits, or Energy Levels
 - 1. Electrons can circle the nucleus only in allowed paths or orbits
 - 2. The energy of the electron is greater when it is in orbits farther from the nucleus
 - 3. The atom achieves the ground state when atoms occupy the closest possible positions around the nucleus
 - 4. Electromagnetic radiation is emitted when electrons move closer to the nucleus

B. Energy transitions

- 1. Energies of atoms are fixed and definite quantities
- 2. Energy transitions occur in jumps of discrete amounts of energy
- 3. Electrons only lose energy when they move to a lower energy state

- C. Shortcomings of the Bohr Model
 - 1. Doesn't work for atoms larger than hydrogen (more than one electron)
 - 2. Doesn't explain chemical behavior

- II. The Quantum Mechanical Model
 - A. Probability and the Electron
 - 1. The position and direction of motion of the electron cannot be simultaneously determined Translated: "The more certain I am about where it is, the less certain I can be about where it is going. The more certain I am about where it is going, the less certain I can be about where it is."
 - B. Regions of probability in which electrons may be found in an atom are determined by mathematical equations. These regions are called orbitals.

III. <u>Atomic Orbitals</u>

- A. Atomic orbital
 - 1. A region in space where there is a high probability of finding an electron
- B. Energy Levels of electrons (n)
 - 1. Indicates the distance of the energy level from the nucleus
 - 2. Values of n are positive integers
 - a. n=1 is closest to the nucleus, and lowest in energy
 - 3. The number of orbitals possible per energy level (or "shell") is equal to n^2
- C. Energy Sublevels
 - 1. Indicates the shape of the orbital
 - 2. Number of orbital shapes allowed in an energy level = n
 - a. Shapes in the first four shells are designated s, p, d, f

Energy Level (<i>n</i>)	Sublevels in main	Number of	Number of	Number of
	energy level	orbitals per	electrons per	electrons per main
	(<i>n</i> sublevels)	sublevel	sublevel	energy level $(2n^2)$
1	S	1	2	2
2	S	1	2	8
	р	3	6	
3	S	1	2	18
	р	3	6	
	d	5	10	
4	S	1	2	32
	р	3	6	
	d	5	10	
	f	7	14	

D. Electron Spin

- 1. A single orbital can contain only two electrons, which must have opposite spins
- 2. Two possible values for spin, +1/2, -1/2

5.2 Electron Arrangement in Atoms

- I. Writing Electrons Configurations
 - A. Rules
 - 1. Aufbau Principle
 - a. An electron occupies the lowest-energy orbital that can receive it
 - 2. Pauli Exclusion Principle
 - a. No two electrons in the same atom can have the same set of four quantum numbers
 - 3. Hund's Rule
 - a. Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin

$$\frac{\uparrow}{2p} \xrightarrow{\uparrow} \frac{\uparrow}{2p} \xrightarrow{\downarrow} \frac{\downarrow}{2p} \xrightarrow{\downarrow}$$

- B. Orbital Notation
 - 1. Unoccupied orbitals are represented by a line, _
 - a. Lines are labeled with the principal quantum number and the sublevel letter
 - 2. Arrows are used to represent electrons
 - a. Arrows pointing up and down indicate opposite spins
- C. Configuration Notation
 - 1. The number of electrons in a sublevel is indicated by adding a superscript to the sublevel designation

Hydrogen =
$$1s^1$$

Helium = $1s^2$
Lithium = $1s^22s^1$

- D. Exceptional Electron Configurations
 - 1. Irregularity of Chromium
 - a. Expected: $1s^22s^22p^63s^23p^64s^23d^4$
 - b. Actual: $1s^22s^22p^63s^23p^64s^13d^5$
 - 2. Irregularity of Copper
 - c. Expected: $1s^22s^22p^63s^23p^64s^23d^9$
 - d. Actual: $1s^22s^22p^63s^23p^64s^13d^{10}$
 - 3. Numerous transition and rare-earth elements transfer electrons from smaller sublevels in order to half-fill, or fill, larger sublevels

5.3 Physics and the Quantum Mechanical Model

- I. <u>Properties of Light</u>
 - A. Electromagnetic Radiation
 - 1. Many types of EM waves
 - a. visible light
 - b. x-rays
 - c. ultraviolet light
 - d. infrared light
 - e. radio waves
 - 2. EM radiation are forms of energy which move through space as waves
 - a. Move at speed of light
 - (1). $3.00 \times 10^8 \text{ m/s}$
 - b. Speed is equal to the frequency times the wavelength $c = v\lambda$
 - (1). <u>Freqency</u> (v) is the number of waves passing a given point in one second
 - (2). <u>Wavelength</u> (λ) is the distance between peaks of adjacent waves

c. Speed of light is a constant, so $v\lambda$ is also a constant (1) v and λ must be inversely proportional

B. Light and Energy

- 1. Radiant energy is transferred in units (or quanta) of energy called photons
 - a. A photon is a particle of energy having a rest mass of zero and carrying a quantum of energy
 - b. A quantum is the minimum amount of energy that can be lost or gained by an atom
- 2. Energy of a photon is directly proportional to the frequency of radiation a. E = hv (*h* is Planck's constant, 6.62554 x 10⁻²⁷ erg sec)

II. <u>Atomic Spectra</u>

- A. Ground State
 - 1. The lowest energy state of an atom
- B. Excited State
 - 1. A state in which an atom has a higher potential energy than in its ground state
- C. Bright line spectrum
 - 1. Light is given off by excited atoms as they return to lower energy states
 - 2. Light is given off in very definite wavelengths
 - 3. A spectroscope reveals lines of particular colors

- a. Definite frequency
- b. Definite wavelength

6.1 Organizing the Elements

I.

- The Periodic Law
 - A. The physical and chemical properties of the elements are periodic functions of their atomic numbers
 - B. Elements on the table are arranged in order of increasing atomic number (number of protons)

II. Metals, Nonmetals, and Metalloids

- A. Metals
 - 1. Good conductors of heat and electricity
 - 2. Lustrous (shiny)
 - 3. Solids (except mercury)
 - 4. Ductile (can be drawn into wire)
 - 5. Malleable (can be hammered into thin sheets)
- B. Nonmetals
 - 1. Poor conductors of heat and electricity
 - 2. Most are gaseous
 - 3. Solids tend to be brittle
- C. Metalloids
 - 1. Some properties of metals, some of nonmetals

6.2 Classifying the Elements

- I. <u>Periods and the Blocks of the Periodic Table</u>
 - A. Periods
 - 1. Horizontal rows on the periodic table
 - 2. Period number corresponds to the highest principal quantum number of the elements in the period
 - B. Sublevel Blocks
 - 1. Periodic table can be broken into blocks corresponding to s, p, d, f sublevels

II. <u>Blocks and Groups</u>

- A. s-Block, Groups 1 and 2
 - 1. Group 1 The alkali metals
 - a. One *s* electron in outer shell
 - b. Soft, silvery metals of low density and low melting points
 - c. Highly reactive, never found pure in nature
 - 2. Group 2 The alkaline earth metals
 - a. Two *s* electrons in outer shell
 - b. Denser, harder, stronger, less reactive than Group 1
 - c. Too reactive to be found pure in nature
- B. d-Block, Groups 3 12
 - 1. Metals with typical metallic properties
 - 2. Referred to as "transition" metals
 - 3. Group number = sum of outermost s and d electrons
- C. p-Block elements, Groups 13 18
 - 1. Properties vary greatly
 - a. Metals
 - (1) softer and less dense than d-block metals
 - (2) harder and more dense than s-block metals
 - b. Metalloids
 - (1) Brittle solids with some metallic and some nonmetallic properties
 - (2) Semiconductors
 - c. Nonmetals
 - (1) Halogens (Group 17) are most reactive of the nonmetals
- D. f-Block, Lanthanides and Actinides
 - 1. Lanthanides are shiny metals similar in reactivity to the Group 2 metals
 - 2. Actinides
 - a. All are radioactive
 - b. Plutonium (94) through Lawrencium (103) are man-made

6.3 Periodic Trends

I

Atomic Radii

- A. Atomic Radius
 - 1. One half the distance between nuclei of identical atoms that are bonded together
- B. Trends
 - 1. Atomic radius tends to decrease across a period due to increasing positive nuclear charge
 - 2. Atomic radii tend to increase down a group due to increasing number energy levels (outer electrons are farther from the nucleus)

II. <u>Trends in Ionization Energy</u>

- A. Ion
 - 1. An atom or a group of atoms that has a positive or negative charge
 - B. Ionization
 - 1. Any process that results in the formation of an ion
 - C. Ionization Energy
 - 1. The energy required to remove one electron from a neutral atom of an element, measured in kilojoules/mole (kJ/mol)

$$A + energy \rightarrow A^+ + e^-$$

- D. Trends
 - 1. Ionization energy of main-group elements tends to increase across each period
 - a. Atoms are getting smaller, electrons are closer to the nucleus
 - 2. Ionization energy of main-group elements tends to decrease as atomic number increases in a group
 - a. Atoms are getting larger, electrons are farther from the nucleus
 - b. Outer electrons become increasingly more shielded from the nucleus by inner electrons
 - 3. Metals have a characteristic low ionization energy
 - 4. Nonmetals have a high ionization energy
 - 5. Noble gases have a very high ionization energy
- E. Removing Additional Electrons

Na + 496 kJ/mol \rightarrow Na⁺ + e⁻ Na⁺ + 4562 kJ/mol \rightarrow Na⁺⁺ + e⁻ Na⁺⁺ + 6912 kJ/mol \rightarrow Na⁺⁺⁺ + e⁻

- 1. Ionization energy increases for each successive electron
- 2. Each electron removed experiences a stronger effective nuclear charge
- 3. The greatest increase in ionization energy comes when trying to remove an electron from a stable, noble gas configuration

III. <u>Trends in Ionic Size</u>

- A. Cations
 - 1. Positive ions
 - 2. Smaller than the corresponding atom
 - a. Protons outnumber electrons
 - b. Less shielding of electrons
- B. Anions
 - 1. Negative ions
 - 2. Larger than the corresponding atoms
 - a. Electrons outnumber protons
 - b. Greater electron-electron repulsion
- C. Trends
 - 1. Ion size tends to increase downward within a group

IV. Trends in Electronegativity

- A. Electronegativity
 - 1. A measure of the ability of an atom in a chemical compound to attract electrons
 - 2. Elements that do not form compounds are not assigned electronegativities
- B. Trends
 - 1. Nonmetals have characteristically high electronegativity
 - a. Highest in the upper right corner
 - 2. Metals have characteristically low electronegativity
 - a. Lowest in the lower left corner of the table
 - 3. Electronegativity tends to increase across a period
 - 4. Electronegativity tends to decrease down a group of main-group elements