Heat of Fusion	Heat of Vaporization
The energy required to convert one gram of a substance from a solid to a	The energy required to convert one gram of a substance from a liquid
liquid at its melting point.	to a vapor at its boiling point.
1 gram H ₂ O(s) + 334 J \rightarrow 1 gram H ₂ O(ℓ)	1 gram H ₂ O(ℓ) + 2260 J \rightarrow 1 gram H ₂ O(g)
The energy released when one gram of a substance is converted from liquid to solid at its freezing point.	The energy released when one gram of a substance condenses from a vapor to a liquid at its condensation point.
1 gram H ₂ O(ℓ) \rightarrow 1 gram H ₂ O(s) + 334 J	1 gram H ₂ O(g) \rightarrow 1 gram H ₂ O(ℓ) + 2260 J
Equation:	Equation:
$Q = m\Delta H_{fus}$	$Q = m \Delta H_{vap}$
Q = heat in Joules	Q = heat in Joules
m = mass in grams	m = mass in grams
$\Delta H_{fus} = 334 Joule/gram$	$\Delta H_{vap} = 2260 \text{ Joule/gram}$

Specific HeatSpecific Heat is the energy that must be added to raise the temperature of one gram of a substance by one Celsius degreeANDSpecific Heat is the energy that must be removed to lower the temperature of one gram of a substance by one Celsius degreeEquation: $Q = m(\Delta T)C_p$
Q = heat in Joules
<math>m = mass in grams
 $\Delta T = Change in Temperature
<math>C_p = Specific Heat in \frac{J}{g \cdot °C}$ Specific Heat Values:For liquid water, $C_p = 4.18 \frac{J}{g \cdot °C}$
For ice, $C_p = 2.05 \frac{J}{g \cdot °C}$ For steam, $C_p = 2.01 \frac{J}{g \cdot °C}$